Guidechem | China Chemical Manufacturers,suppliers,B2B Marketplace
Encyclop..
  • Products
  • Encyclopedia
  • Buy offers
  • Suppliers
Home> Encyclopedia >Antineoplastic Agents>Pharmaceutical Intermediates>Organic Intermediate
Doxorubicin hydrochloride structure
Doxorubicin hydrochloride structure

Doxorubicin hydrochloride

Iupac Name:(7R,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione;hydrochloride
CAS No.: 25316-40-9
Molecular Weight:579.983
Modify Date.: 2022-11-25 02:18
Introduction: Doxorubicin is available as both the conventional dosageform and a liposomal preparation, both of which are administeredby infusion. Doxorubicin HCl powder is available in10-, 20-, 50-, and 150-mg vials and is widely used in treatingvarious cancers, including leukemias, soft and bone tissuesarcomas, Wilms tumor, neuroblastoma, small cell lungcancer, and ovarian and testicular cancer. View more+
1. Names and Identifiers
1.1 Name
Doxorubicin hydrochloride
1.2 Synonyms

(1S,3S)-3,5,12-trihydroxy-3-(hydroxyacetyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranoside hydrochloride (1:1) (1S,3S)-3,5,12-trihydroxy-3-(hydroxyacetyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside hydrochloride (1S,3S)-3-Glycoloyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydro-1-tetracenyl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside hydrochloride (1:1) (1S,3S)-3-glycoloyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranoside hydrochloride (1S,3S)-3-Glycoloyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside hydrochloride (1:1) (8S,10S)-10-((3-Amino-2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-naphthacenedione hydrochloride (8S,10S)-10-((3-Amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy)-8-glycoloyl-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12-naphthacenedione hydrochloride (8S,10S)-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl]oxy}-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione hydrochloride (8S-cis)-10-((3-Amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxynaphthacene-5,12-dione hydrochloride (8S-cis)-10-[(3-Amino-2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-naphthacenedione hydrochloride (8s-cis)-10-[(3-amino-2,3,6-trideoxy-alpha-l-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxynaphthacene-5,12-dione hydrochloride 14-HYDROXYDAUNOMYCIN HCL 14-HYDROXYDAUNOMYCIN HYDROCHLORIDE 5,12-Naphthacenedione, 10-((3-amino-2,3,6-trideoxy-α-l-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-, hydrochloride, (8S-cis)- 5,12-naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-, (8S,10S)-, hydrochloride (1:1) 5,12-Naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-, (8S,10S)-, hydrochloride (1:1) 5,12-naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-, (8S,10S)-, hydrochloride ADM hydrochloride ADRIACIN ADRIAMYCIN HCL ADRIAMYCIN HYDROCHLORIDE Adriamycin, hydrochloride ADRIBLASTINA HYDROCHLORIDE Ardriamycin Caely CAELYX Daunorubicin Impurity 4 DOX DOX HCl Dox hydrochloride DOX,Hydroxydaunorubicin hydrochloride Doxorubicin (Adriamycin) Doxorubicin (Adriamycin) HCl Doxorubicin (hydrochloride) doxorubicin HCl EINECS 246-818-3 fi6804 Hydroxydaunorubicin hydrochloride Lipodox MFCD00077757

1.3 CAS No.
25316-40-9
1.4 CID
129626538
1.5 EINECS(EC#)
246-818-3
1.6 Molecular Formula
C27H30ClNO11 (isomer)
1.7 Inchi
InChI=1S/C27H29NO11.ClH/c1-10-22(31)13(28)6-17(38-10)39-15-8-27(36,16(30)9-29)7-12-19(15)26(35)21-20(24(12)33)23(32)11-4-3-5-14(37-2)18(11)25(21)34;/h3-5,10,13,15,17,22,29,31,33,35-36H,6-9,28H2,1-2H3;1H/t10-,13-,15-,17-,22+,27-;/m1./s1
1.8 InChkey
MWWSFMDVAYGXBV-BXPPNZEESA-N
1.9 Canonical Smiles
CC1C(C(CC(O1)OC2CC(CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O.Cl
1.10 Isomers Smiles
C[C@@H]1[C@@H]([C@@H](C[C@H](O1)O[C@@H]2C[C@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O.Cl
2. Properties
2.1 Melting point
216℃
2.1 Boiling point
810.3 °C at 760 mmHg
2.1 Flash Point
443.8 °C
2.1 Precise Quality
579.15100
2.1 PSA
206.07000
2.1 logP
1.50360
2.1 Solubility
H2O: 10?mg/mL, clear, red-orange
2.2 Λmax
497nm(H2O)(lit.)
2.3 Appearance
Orange-Red Crystalline Solid
2.4 Storage

2-8℃

2.5 Chemical Properties
Doxorubicin is an orange to red cake-like or needle-like crystalline solid. It is a cytotoxic anthracycline antibiotic isolated from cultures of Streptomyces peucetius var. caesius. Doxorubicin hydrochloride is an orange-red, crystalline, hygroscopic powder that is soluble in water and slightly soluble in methanol.
2.6 Color/Form
Red, crystalline solid
2.7 pKa
pKa 8.25±0.60 (Uncertain);8.43±0.70 (Uncertain);11.9±0.4 (Uncertain);12.95±0.1 (Uncertain);13.8±0.70 (Uncertain)
2.8 Water Solubility
H2O: 10?mg/mL, clear, red-orange
2.9 Spectral Properties
Specific optical rotation: +248 deg at 20 deg C/D (0.1% in methanol)
Max absorption (methanol at 56 deg C): 290 nm (epsilon = 145, 1%, 1 cm); 477 nm (epsilon = 225, 1%, 1 cm); 495 nm (epsilon = 223, 1%, 1 cm); 530 nm (epsilon = 124, 1%, 1 cm); 233 nm (epsilon = 658, 1%, 1 cm); 253 nm (epsilon = 440, 1%, 1 cm)
2.10 Stability
Stable at room temperature in closed containers under normal storage and handling conditions.
2.11 StorageTemp
2-8°C
3. Use and Manufacturing
3.1 General Description
Doxorubicin is available as both the conventional dosageform and a liposomal preparation, both of which are administeredby infusion. Doxorubicin HCl powder is available in10-, 20-, 50-, and 150-mg vials and is widely used in treatingvarious cancers, including leukemias, soft and bone tissuesarcomas, Wilms tumor, neuroblastoma, small cell lungcancer, and ovarian and testicular cancer.
3.2 Potential Exposure
An antibiotic product from streptomyces, used as anticancer drug
3.3 Shipping
UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.
3.4 Usage
Used as an antineoplastic
3.5 Waste Disposal
It is inappropriate and possibly dangerous to the environment to dispose of expired or waste pharmaceuticals by flushing them down the toilet or discarding them to the trash. Household quantities of expired or waste pharmaceuticals may be mixed with wet cat litter or coffee grounds, double-bagged in plastic, discard in trash. Larger quantities shall carefully take into consideration applicable DEA, EPA, and FDA regulations. If possible return the pharmaceutical to the manufacturer for proper disposal being careful to properly label and securely package the material. Alternatively, the waste pharmaceutical shall be labeled, securely packaged and transported by a state licensed medical waste contractor to dispose by burial in a licensed hazardous or toxic waste landfill or incinerator. Doxorubicin hydrochloride Preparation Products And Raw materials Preparation Products
4. Safety and Handling
4.1 Symbol
GHS07;GHS08;
4.1 Hazard Codes
T+
4.1 Signal Word
DANGER
4.1 Risk Statements
R45;R22
4.1 Safety Statements
S53;S45;S36/37/39;S22;S7/9
4.1 Exposure Standards and Regulations
The Approved Drug Products with Therapeutic Equivalence Evaluations List identifies currently marketed prescription drug products, incl doxorubicin hydrochloride, approved on the basis of safety and effectiveness by FDA under sections 505 of the Federal Food, Drug, and Cosmetic Act. /Doxorubicin hydrochloride/
4.2 Octanol/Water Partition Coefficient
log Kow = 1.27
4.3 Fire Hazard
Doxorubicin hydrochloride is probably combustible.
4.4 Other Preventative Measures
PRECAUTIONS FOR "CARCINOGENS": Smoking, drinking, eating, storage of food or of food & beverage containers or utensils, & the application of cosmetics should be prohibited in any laboratory. All personnel should remove gloves, if worn, after completion of procedures in which carcinogens have been used. They should ... wash ... hands, preferably using dispensers of liq detergent, & rinse ... thoroughly. Consideration should be given to appropriate methods for cleaning the skin, depending on nature of the contaminant. No standard procedure can be recommended, but the use of organic solvents should be avoided. Safety pipettes should be used for all pipetting. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": In animal laboratory, personnel should remove their outdoor clothes & wear protective suits (preferably disposable, one-piece & close-fitting at ankles & wrists), gloves, hair covering & overshoes. ... Clothing should be changed daily but ... discarded immediately if obvious contamination occurs ... /also,/ workers should shower immediately. In chemical laboratory, gloves & gowns should always be worn ... however, gloves should not be assumed to provide full protection. Carefully fitted masks or respirators may be necessary when working with particulates or gases, & disposable plastic aprons might provide addnl protection. If gowns are of distinctive color, this is a reminder that they should not be worn outside of lab. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": ... Operations connected with synth & purification ... should be carried out under well-ventilated hood. Analytical procedures ... should be carried out with care & vapors evolved during ... procedures should be removed. ... Expert advice should be obtained before existing fume cupboards are used ... & when new fume cupboards are installed. It is desirable that there be means for decreasing the rate of air extraction, so that carcinogenic powders can be handled without ... powder being blown around the hood. Glove boxes should be kept under negative air pressure. Air changes should be adequate, so that concn of vapors of volatile carcinogens will not occur. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": Vertical laminar-flow biological safety cabinets may be used for containment of in vitro procedures ... provided that the exhaust air flow is sufficient to provide an inward air flow at the face opening of the cabinet, & contaminated air plenums that are under positive pressure are leak-tight. Horizontal laminar-flow hoods or safety cabinets, where filtered air is blown across the working area towards the operator, should never be used ... Each cabinet or fume cupboard to be used ... should be tested before work is begun (eg, with fume bomb) & label fixed to it, giving date of test & avg air-flow measured. This test should be repeated periodically & after any structural changes. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": Principles that apply to chem or biochem lab also apply to microbiological & cell-culture labs ... Special consideration should be given to route of admin. ... Safest method of administering volatile carcinogen is by injection of a soln. Admin by topical application, gavage, or intratracheal instillation should be performed under hood. If chem will be exhaled, animals should be kept under hood during this period. Inhalation exposure requires special equipment. ... Unless specifically required, routes of admin other than in the diet should be used. Mixing of carcinogen in diet should be carried out in sealed mixers under fume hood, from which the exhaust is fitted with an efficient particulate filter. Techniques for cleaning mixer & hood should be devised before expt begun. When mixing diets, special protective clothing &, possibly, respirators may be required. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": When ... admin in diet or applied to skin, animals should be kept in cages with solid bottoms & sides & fitted with a filter top. When volatile carcinogens are given, filter tops should not be used. Cages which have been used to house animals that received carcinogens should be decontaminated. Cage-cleaning facilities should be installed in area in which carcinogens are being used, to avoid moving of ... contaminated /cages/. It is difficult to ensure that cages are decontaminated, & monitoring methods are necessary. Situations may exist in which the use of disposable cages should be recommended, depending on type & amt of carcinogen & efficiency with which it can be removed. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": To eliminate risk that ... contamination in lab could build up during conduct of expt, periodic checks should be carried out on lab atmospheres, surfaces, such as walls, floors & benches, & ... interior of fume hoods & airducts. As well as regular monitoring, check must be carried out after cleaning-up of spillage. Sensitive methods are required when testing lab atmospheres. ... Methods ... should ... where possible, be simple & sensitive. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": Rooms in which obvious contamination has occurred, such as spillage, should be decontaminated by lab personnel engaged in expt. Design of expt should ... avoid contamination of permanent equipment. ... Procedures should ensure that maintenance workers are not exposed to carcinogens. ... Particular care should be taken to avoid contamination of drains or ventilation ducts. In cleaning labs, procedures should be used which do not produce aerosols or dispersal of dust, ie, wet mop or vacuum cleaner equipped with high-efficiency particulate filter on exhaust, which are avail commercially, should be used. Sweeping, brushing & use of dry dusters or mops should be prohibited. Grossly contaminated cleaning materials should not be re-used ... If gowns or towels are contaminated, they should not be sent to laundry, but ... decontaminated or burnt, to avoid any hazard to laundry personnel. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": Doors leading into areas where carcinogens are used ... should be marked distinctively with appropriate labels. Access ... limited to persons involved in expt. ... A prominently displayed notice should give the name of the Scientific Investigator or other person who can advise in an emergency & who can inform others (such as firemen) on the handling of carcinogenic substances. /Chemical Carcinogens/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Accidental contamination of the health-care environment, resulting in exposure of personnel, patients, visitors, and family members to hazardous substances, is prevented by maintaining the physical integrity and security of packages of hazardous drugs. 1. Access to all areas where hazardous drugs are stored is limited to specified authorized staff. 2. A method should be present for identifying to personnel those drugs that require special precautions (eg, cytotoxics). One way to accomplish this is to apply appropriate warning labels to all hazardous drug containers, shelves, and bins where the drug products are stored. ... 3. A method of identifying, for patients and family members, those drugs that require special precautions in the home should be in place. This may be accomplished in the health-care setting, by providing specific labeling for discharge medications, along with written instructions. 4. Methods for identifying shipping cartons of hazardous drugs should be required from manufacturers and distributors of these drugs. 5. Written procedures for handling damaged packages of hazardous drugs should be maintained. Personnel involved in shipping and receiving hazardous drugs should be trained in these procedures, including the proper use of protective garments and equipment. Damaged shipping cartons of hazardous drugs should be received and opened in an isolated area (eg, in a laboratory fume hood, if available, not in a vertical laminar airflow biological safety cabinet used for preparing sterile products). /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Facilities (eg, shelves, carts, counters, and trays) for storing hazardous drugs are designed to prevent breakage and to limit contamination in the event of leakage. Bins, shelves with barriers at the front, or other design features that reduce the chance of drug containers falling to the floor should be used. Hazardous drugs requiring refrigeration should be stored separately from nonhazardous drugs in individual bins designed to prevent breakage and to contain leakage. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Until the reproductive risks (or lack thereof) associated with handling hazardous drugs within a safety program have been substantiated, staff who are pregnant or breast-feeding should be allowed to avoid contact with these drugs. Policies should be in effect that provide these individuals with alternative tasks or responsibilities if they so desire. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The pharmacy should provide access to information on toxicity, treatment of acute exposure (if available), chemical inactivators, solubility and stability of hazardous drugs (including investigational agents) used in the workplace. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Appropriate engineering controls should be in place to protect the drug product from microbial contamination and to protect personnel and the environment from the potential hazards of the product. These engineering controls should be maintained according to applicable regulations and standards. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Biological safety cabinets should be cleaned and disinfected regularly to ensure a proper environment for preparation of sterile products. For routine cleanups of surfaces between decontaminations, water should be used (for injection or irrigation) with or without a small amount of cleaner. If the contamination is soluble only in alcohol, then 70% isopropyl or ethyl alcohol may be used in addition to the cleaner. In general, alcohol is not a good cleaner, only a disinfectant, and its use in a biohazard cabinet should be limited. The biohazard cabinet should be disinfected with 70% alcohol before any aseptic manipulation is begun. The excessive use of alcohol should be avoided in biohazard cabinets where air is recirculated ... because alcohol vapors may build up in the cabinet. A lint-free, plastic-backed disposable liner may be used in the biological safety cabinet to facilitate spill cleanup. ... If used, the liner should be changed frequently ... /or/ whenever it is overtly contaminated. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The biological safety cabinets should be decontaminated on a regular basis (ideally at least weekly) and whenever there is a spill or the biological safety cabinet is moved or serviced, including for certification. ... Currently, no single reagent will deactivate all known hazardous drugs; therefore, decontamination of a biological safety cabinet used for such drugs is limited to removal of contamination from a nondisposable surface (the cabinet) to a disposable surface (eg, gauze or towels) by use of a good cleaning agent that removes chemicals from stainless steel. The cleaning agent selected should have a pH approximating that of soap and be appropriate for stainless steel. Cleaners containing chemicals such as quaternary ammonium compounds should be used with caution, because they may be hazardous to humans and their vapors may build up in any biological safety cabinet where air is recirculated. Similar caution should be used with any pressurized aerosol cleaner; spraying a pressurized aerosol into a biological safety cabinet may disrupt the protective containment airflow, damage the high efficiency particulate air filter, and cause an accumulation of the propellant within a biological safety cabinet where air is recirculated, resulting in a fire and explosion hazard. During decontamination, the operator should wear a disposable closed front gown, disposable latex gloves covered by disposable utility gloves, safety glasses or goggles, a hair covering, and a disposable respirator, because the glass shield of the biological safety cabinet occasionally must be lifted. The blower must be left on, and only heavy toweling or gauze should be used in the biological safety cabinet to prevent it from being "sucked" up the plenum and into the high efficiency particulate air filter. Decontamination should be done from top to bottom (areas of lesser contamination to greater) by applying the cleaner, scrubbing, and rinsing thoroughly with distilled or deionized water. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The high efficiency particulate air filters /or other exhaust scrubbing system/ of the biohazard cabinet must be replaced whenever they restrict required airflow velocity or if they are overtly contaminated (eg, by a breach in technique that causes hazardous drug to be introduced onto the clean side of the supply high efficiency particulate air filter). Personnel and environmental protection must be maintained during replacement of a contaminated high efficiency particulate air filter. Because replacement of a high efficiency particulate air filter generally requires breaking the integrity of the containment aspect of the cabinet, this procedure may release contamination from the filter into the pharmacy or intravenous preparation area if carried out in an inappropriate manner. Before replacement of a high efficiency particulate air filter contaminated with hazardous drugs, the biological safety cabinet service agent should be consulted for a mutually acceptable procedure for replacing and subsequently disposing of a contaminated high efficiency particulate air filter. One procedure would include moving the biological safety cabinet to a secluded area or using plastic barriers to segregate the contaminated area. Protective clothing and equipment must be used by the servicer. The biological safety cabinet should be decontaminated before filter replacement. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ During removal of gloves, ... avoid touching the inside of the glove or the skin with the contaminated glove fingers. ... The worker should wear a protective disposable gown made of lint free, low-permeability fabric with a solid front, long sleeves, and tight-fitting elastic or knit cuffs when preparing hazardous drugs. Washable garments are immediately penetrated by liquids and therefore provide little, if any protection. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ When double gloving, one glove should be placed under the gown cuff and one over. The glove-gown interface should be such that no skin on the arm or wrist is exposed. Gloves and gowns should not be worn outside the immediate preparation area. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Eyewash fountains should be available in areas where hazardous drugs are routinely handled. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Although noninjectable dosage forms of hazardous drugs contain varying proportions of drug to nondrug (nonhazardous) components, there is potential for personnel exposure and environmental contamination with the hazardous components. Procedures should be developed to avoid the release of aerosolized powder or liquid into the environment during manipulation of these drugs. Drugs designated as hazardous should be labeled or otherwise identified as such to prevent their improper handling. Tablet and capsule forms of these drugs should not be placed in automated counting machines, which subject them to stress and may introduce powdered contaminants into the work area. During routine handling of hazardous drugs and contaminated equipment, workers should wear one pair of gloves of good quality and thickness. The counting and pouring of hazardous drugs should be done carefully, and clean equipment dedicated for use with these drugs should be used. ... When hazardous drug tablets in unit-of-use packaging are being crushed, the package should be placed in a small sealable plastic bag and crushed with a spoon or pestle; caution should be used not to break the plastic bag. Disposal of unused or unusable oral or topical dosage forms of hazardous drugs should be performed in the same manner as for hazardous injectable dosage forms and waste. ... Hazardous drug work areas should have a sink (preferably with an eyewash fountain) and appropriate first aid equipment to treat accidental skin or eye contact according to the protocol. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ A distinctive warning label with an appropriate CAUTION statement should be attached to all hazardous drug materials, consistent with state laws and regulations. This would include, for example, syringes, IV containers, containers of unit-dose tablets and liquids, prescription vials and bottles, waste containers, and patient specimens that contain hazardous drugs. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Supplies of disposable gloves and gowns, safety glasses, disposable plastic-backed absorbent liners, gauze pads, hazardous waste disposal bags, hazardous drug warning labels, and puncture-resistant containers for disposal of needles and ampuls should be conveniently located for all areas where hazardous drugs are handled. Assembling a "hazardous drug preparation and administration kit" is one way to furnish nursing and medical personnel with the materials needed to reduce the risk of preparing and administering a hazardous drug. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Prospective temporary and permanent employees who may be required to work with hazardous drugs should be so notified and should receive adequate information about the policies and procedures pertaining to their use. This notification should be documented during the interview process and retained as part of the employment record for all employees. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ All personnel involved with the transportation, preparation, administration, and disposal of cytotoxic and hazardous substances should continually be updated on new or revised information on safe handling of cytotoxic and hazardous substances. Policies and procedures should be updated accordingly. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The work area should be designed to provide easy access to those items necessary to prepare, label, and transport final products; contain all related waste; and avoid inadvertent contamination of the work area. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Each health-care setting should have an established first aid protocol for treating cases of direct contact with hazardous drugs, many of which are irritating or caustic and can cause tissue destruction. Medical care providers in each setting should be contacted for input into this protocol. The protocol should include immediate treatment measures and should specify the type and location of medical follow-up and work-injury reporting. Copies of the protocol, highlighting emergency measures, should be posted wherever hazardous drugs are routinely handled. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Only individuals trained to administer hazardous drugs should be allowed to perform this function. Training programs should contain information on the therapeutic and adverse effects of these drugs and the potential, long term health risk to personnel handling these drugs. Each individual's knowledge and technique should be evaluated before administration of these drugs. This should be done by written examination and direct observation of the individual's performance. /Antineoplastic agents/
4.5 Hazard Declaration
H302; H315; H319; H350
4.5 Cleanup Methods
PRECAUTIONS FOR "CARCINOGENS": A high-efficiency particulate arrestor (HEPA) or charcoal filters can be used to minimize amt of carcinogen in exhausted air ventilated safety cabinets, lab hoods, glove boxes or animal rooms ... Filter housing that is designed so that used filters can be transferred into plastic bag without contaminating maintenance staff is avail commercially. Filters should be placed in plastic bags immediately after removal ... The plastic bag should be sealed immediately ... The sealed bag should be labelled properly ... Waste liquids ... should be placed or collected in proper containers for disposal. The lid should be secured & the bottles properly labelled. Once filled, bottles should be placed in plastic bag, so that outer surface ... is not contaminated ... The plastic bag should also be sealed & labelled. ... Broken glassware ... should be decontaminated by solvent extraction, by chemical destruction, or in specially designed incinerators. /Chemical Carcinogens/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Spill kits containing all materials needed to clean up spills of hazardous drugs should be assembled or purchased. These kits should be readily available in all areas where hazardous drugs are routinely handled. If hazardous drugs are being prepared or administered in a nonroutine area (home setting or unusual patient-care area), a spill kit should be obtained by the drug handler. The kit should include two pairs of disposable gloves (one outer pair of utility gloves and one inner latex pair); low-permeability, disposable protective garments (coveralls or gown and shoe covers); safety glasses or splash goggles; respirator; absorbent, plastic-backed sheets or spill pads; disposable toweling; at least 2 sealable thick plastic hazardous waste disposal bags (prelabeled with an appropriate warning label); a disposable scoop for collecting glass fragments; and a puncture-resistant container for glass fragments. All individuals who routinely handle hazardous drugs must be trained in proper spill management and cleanup procedures. Spills and breakages must be cleaned up immediately according to the following procedures. If the spill is not located in a confined space, the spill area should be identified and other people should be prevented from approaching and spreading the contamination. Wearing protective apparel from the spill kit, workers should remove any broken glass fragments and place them in the puncture-resistant container. Liquids should be absorbed with a spill pad; powder should be removed with damp disposable gauze pads or soft toweling. The hazardous material should be completely removed and the area rinsed with water and then cleaned with detergent. The spill cleanup should proceed progressively from areas of lesser to greater contamination. The detergent should be thoroughly rinsed and removed. All contaminated materials should be placed in the disposal bags provided and sealed and transported to a designated containment receptacle. Spills occurring in the biohazard cabinet should be cleaned up immediately; a spill kit should be used if the volume exceeds 150 ml or the contents of one drug vial or ampule. If there is broken glass, utility gloves should be worn to remove it and place it in the puncture-resistant container located in the biohazard cabinet. The biological safety cabinet, including the drain spillage trough, should be thoroughly cleaned. If the spill is not easily and thoroughly contained, the biological safety cabinet should be decontaminated after cleanup. If the spill contaminates the high efficiency particulate air filter, use of the biological safety cabinet should be suspended until the cabinet has been decontaminated and the high efficiency particulate air filter replaced. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ If hazardous drugs are routinely prepared or administered in carpeted areas, special equipment is necessary to remove the spill. Absorbent powder should be substituted for pads or sheets and left in place on the spill for the time recommended by the manufacturer. The powder should then be picked up with a small vacuum unit reserved for hazardous drug cleanup. The carpet should then be cleaned according to usual procedures. The vacuum bag should be removed and discarded or cleaned, and the exterior of the vacuum cleaner should be washed with detergent and rinsed before being covered and stored. The contaminated powder should be discarded into a sealable plastic bag and segregated with other contaminated waste materials. Alternatively, inexpensive wet or dry vacuum units may be purchased for this express use and used with appropriate cleaners. All such units are contaminated, once used, and must be cleaned, stored, and ultimately discarded /properly/ ... The circumstances and handling of spills should be documented. Health-care personnel exposed during spill management should also complete an incident report or exposure form. /Antineoplastic agents/
4.6 DisposalMethods
SRP: Expired or waste pharmaceuticals shall carefully take into consideration applicable DEA, EPA, and FDA regulations. It is not appropriate to dispose by flushing the pharmaceutical down the toilet or discarding to trash. If possible return the pharmaceutical to the manufacturer for proper disposal being careful to properly label and securely package the material. Alternatively, the waste pharmaceutical shall be labeled, securely packaged and transported by a state licensed medical waste contractor to dispose by burial in a licensed hazardous or toxic waste landfill or incinerator.
PRECAUTIONS FOR "CARCINOGENS": There is no universal method of disposal that has been proved satisfactory for all carcinogenic compounds & specific methods of chem destruction ... published have not been tested on all kinds of carcinogen-containing waste. ... summary of avail methods & recommendations ... /given/ must be treated as guide only. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": ... Incineration may be only feasible method for disposal of contaminated laboratory waste from biological expt. However, not all incinerators are suitable for this purpose. The most efficient type ... is probably the gas-fired type, in which a first-stage combustion with a less than stoichiometric air:fuel ratio is followed by a second stage with excess air. Some ... are designed to accept ... aqueous & organic-solvent solutions, otherwise it is necessary ... to absorb soln onto suitable combustible material, such as sawdust. Alternatively, chem destruction may be used, esp when small quantities ... are to be destroyed in laboratory. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": HEPA (high-efficiency particulate arrestor) filters ... can be disposed of by incineration. For spent charcoal filters, the adsorbed material can be stripped off at high temp & carcinogenic wastes generated by this treatment conducted to & burned in an incinerator. ... LIQUID WASTE: ... Disposal should be carried out by incineration at temp that ... ensure complete combustion. SOLID WASTE: Carcasses of lab animals, cage litter & misc solid wastes ... should be disposed of by incineration at temp high enough to ensure destruction of chem carcinogens or their metabolites. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": ... Small quantities of ... some carcinogens can be destroyed using chem reactions ... but no general rules can be given. ... As a general technique ... treatment with sodium dichromate in strong sulfuric acid can be used. The time necessary for destruction ... is seldom known ... but 1-2 days is generally considered sufficient when freshly prepd reagent is used. ... Carcinogens that are easily oxidizable can be destroyed with milder oxidative agents, such as saturated soln of potassium permanganate in acetone, which appears to be a suitable agent for destruction of hydrazines or of compounds containing isolated carbon-carbon double bonds. Concn or 50% aqueous sodium hypochlorite can also be used as an oxidizing agent. /Chemical Carcinogens/
PRECAUTIONS FOR "CARCINOGENS": Carcinogens that are alkylating, arylating or acylating agents per se can be destroyed by reaction with appropriate nucleophiles, such as water, hydroxyl ions, ammonia, thiols & thiosulfate. The reactivity of various alkylating agents varies greatly ... & is also influenced by sol of agent in the reaction medium. To facilitate the complete reaction, it is suggested that the agents be dissolved in ethanol or similar solvents. ... No method should be applied ... until it has been thoroughly tested for its effectiveness & safety on material to be inactivated. For example, in case of destruction of alkylating agents, it is possible to detect residual compounds by reaction with 4(4-nitrobenzyl)-pyridine. /Chemical Carcinogens/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ All contaminated disposables should be contained in sealable bags for transfer to larger waste containers. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ All bottles must be discarded as contaminated waste after decontamination of the biohazard cabinet. All protective apparel (gown, gloves, goggles, and respirator) should be discarded as contaminated waste. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The contaminated filters must be removed, bagged in thick plastic and prepared for disposal in a hazardous waste dump site or incinerator licensed by the Environmental Protection Agency (EPA). /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ The gown should be removed and placed in a sealable container before removal of the inner gloves. The inner gloves should be removed last and placed in the container with the gown. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Hazardous drug waste should be placed in specially marked (specifically labeled CAUTION: HAZARDOUS CHEMICAL WASTE) thick plastic bags or leakproof containers. These receptacles should be kept in all areas where the drugs are commonly used. All and only hazardous drug waste should be placed in them. Receptacles used for glass fragments, needles, and syringes should be puncture resistant. Hazardous drug waste should not be mixed with any other waste. Waste containers should be handled with uncontaminated gloves. ... Gloves, gowns, drug vials, etc, should be sealed in specially labeled (CAUTION: HAZARDOUS CHEMICAL WASTE) thick plastic bags or leakproof containers. ... All hazardous waste collected from drug preparation and patient-care areas should be held in a secure place in labeled, leakproof drums or cartons (as required by state or local regulation or disposal contractor) until disposal. This waste should be disposed of as hazardous or toxic waste in an EPA-permitted state-licensed hazardous waste incinerator. Transport to an offsite incinerator should be done by a contractor licensed to handle and transport hazardous waste. ... If access to an appropriately licensed incinerator is not available, transport to and burial in an EPA-licensed hazardous waste dump site is an acceptable alternative. While there are concerns that destruction of carcinogens by incineration may be incomplete, newer technologies and stringent licensing criteria have improved this disposal method. ... Chemical deactivation of hazardous drugs should be undertaken only by individuals who are thoroughly familiar with the chemicals and the procedures required to complete such a task. The IARC recently published a monograph describing methods for chemical destruction of some cytotoxic (antineoplastic) drugs in the laboratory setting. The chemicals and equipment described, however, are not generally found in the clinical setting, and many of the deactivating chemicals are toxic and hazardous. Most procedures require the use of a chemical fume hood. The procedures are generally difficult, and the deactivation is not always complete. Serious consideration should be given to the negative aspects of chemical deactivation before one commits to such a course of action. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Regulatory agencies such as the EPA and state solid and hazardous waste agencies and local air and water quality control boards must be consulted regarding the classification and appropriate disposal of drugs that are defined as hazardous or toxic chemicals. EPA categorizes several of the antineoplastic agents as toxic wastes, while many states are more stringent and include as carcinogens certain cytotoxic drugs and hormonal preparations. EPA also allows exemptions from toxic waste regulations for small quantity generators, whereas certain states do not. It is critical to research these regulations when disposal procedures are being established. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ If the biological safety cabinets is equipped with a drainpipe and valve, it may be used to collect rinse water. The collection vessel used must fit well around the drain valve and not allow splashing. Gauze may be used around the connection to prevent aerosol from escaping. The collection vessel must have a tight fitting cover, and all rinse water (gauze, if used) must be disposed of as contaminated waste. /Antineoplastic agents/
4.7 RIDADR
NONH for all modes of transport
4.7 Caution Statement
P201-P305 + P351 + P338-P308 + P313
4.7 Formulations/Preparations
ADM
Adriamycin
Adriblastin
Adriblastina
DX
4.8 Incompatibilities
Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides
4.9 WGK Germany
3
4.9 RTECS
QI9295900
4.9 Protective Equipment and Clothing
PRECAUTIONS FOR "CARCINOGENS": ... Dispensers of liq detergent /should be available./ ... Safety pipettes should be used for all pipetting. ... In animal laboratory, personnel should ... wear protective suits (preferably disposable, one-piece & close-fitting at ankles & wrists), gloves, hair covering & overshoes. ... In chemical laboratory, gloves & gowns should always be worn ... however, gloves should not be assumed to provide full protection. Carefully fitted masks or respirators may be necessary when working with particulates or gases, & disposable plastic aprons might provide addnl protection. ... Gowns ... /should be/ of distinctive color, this is a reminder that they are not to be worn outside the laboratory. /Chemical Carcinogens/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Protective apparel: Disposable closed-front gown or coveralls, disposable utility gloves over disposable latex gloves, NIOSH-approved air-purifying half-mask respirator equipped with a high efficiency filter, and eye protection should be worn. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Class 100 clean-air work stations, both horizontal and vertical airflow (with no containment characteristics), are inappropriate engineering controls for handling hazardous drugs because they provide no personnel protection and permit environmental contamination. Although there are no engineering controls designed specifically for the safe handling of hazardous chemicals as sterile products, Class II contained vertical-flow biological safety cabinets (biohazard cabinets) have been adopted for this use. Biohazard cabinetry is, however, designed for the handling of infectious agents, not hazardous chemicals. ... Based on design, ease of use, and cost considerations, Class II contained-vertical-flow biohazard cabinetry is currently recommended for use in preparing sterile doses of hazardous drugs. Class II cabinetry design and performance specifications are defined in NSF Standard 49. Biological safety cabinets selected for use with hazardous drugs should meet NSF Standard 49 specifications to ensure the maximum protection from these engineering controls. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Workers should wear powder free, disposable surgical latex gloves of good quality when preparing hazardous drugs. Selection criteria for gloves should include thickness (especially at the fingertips where stress is the greatest), fit, length, and tactile sensation. ... The practice of double gloving is supported by research that indicates that many glove materials vary in drug permeability even within lots; therefore, double gloving is recommended. ... In general, surgical latex gloves fit better, have appropriate elasticity for double gloving and maintaining the integrity of the glove-gown interface, and have sufficient tactile sensation (even during double gloving) for stringent aseptic procedures. ... Powdered gloves should be avoided. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ Workers who are not protected by the containment environment of a biohazard cabinet should use respiratory protection when handling hazardous drugs. Respiratory protection should be an adjunct to and not a substitute for engineering controls. Surgical masks of all types provide no respiratory protection against powdered or liquid aerosols of hazardous drugs. In situations where workers may be exposed to potential eye contact with hazardous drugs, an appropriate plastic face shield or splash goggles should be worn. /Antineoplastic agents/
/PRECAUTIONS FOR ANTINEOPLASTIC AGENTS:/ During compounding of hazardous drugs (eg, crushing, dissolving, and preparing an ointment), workers should wear low permeability gowns and double gloves. Compounding should take place in a protective area such as a disposable glove box. If compounding must be done in the open, an area away from drafts and traffic must be selected, and the worker should use appropriate respiratory protection. /Antineoplastic agents/
4.10 Reactivities and Incompatibilities
Doxorubicin hydrochloride solution is chemically incompatible with heparin sodium injection, and a precipitate may form if the solutions are mixed. Doxorubicin hydrochloride solution also is reportedly incompatible with fluorouracil, and a precipitate may form if the solutions are mixed. The manufacturers recommend that doxorubicin hydrochloride solutions or doxorubicin liposomal dispersion generally not be mixed with other drugs; specialized references should be consulted for specific compatibility information.
4.11 Report

NTP 10th Report on Carcinogens. EPA Genetic Toxicology Program.

4.12 Safety

Poison by subcutaneous, intramuscular, intravenous, and intraperitoneal routes. Moderately toxic by ingestion. Experimental reproductive effects. Human systemic effects: changes in kidney tubules, cardiomyopathy, acute pulmonary edema. Questionable carcinogen with experimental tumorigenic data. Mutation data reported. An antineoplastic and immunosuppressive agent. When heated to decomposition it emits toxic fumes of NOx and HCl.
Hazard Codes:?ToxicT,VeryT+
Risk Statements: 45-22-40-26/27/28
R45:May cause cancer.?
R22:Harmful if swallowed.?
R40:Limited evidence of a carcinogenic effect.?
R26/27/28:Very toxic by inhalation, in contact with skin and if swallowed.
Safety Statements: 53-45-36/37/39-22-7/9
S53:Avoid exposure - obtain special instructions before use.?
S45:In case of accident or if you feel unwell, seek medical advice immediately (show the label whenever possible.)?
S36/37/39:Wear suitable protective clothing, gloves and eye/face protection.?
S22:Do not breathe dust.?
S7:Keep container tightly closed.?
S9:Keep container in a well-ventilated place.
WGK Germany: 3
RTECS: QI9295900
F: 10-21

4.13 Specification

? Doxorubicin hydrochloride , with CAS number of 25316-40-9, can be called (8S,10S)-10-((3-Amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl)oxy)-8-glycoloyl-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12-naphthacenedione hydrochloride ; Adriacin ; Adriamycin PFS ; Doxorubicin HCl . It is an?orange-red crystalline solid,?used as an antineoplastic,?Doxorubicin hydrochloride (CAS NO.25316-40-9) are weak chemical bases. They neutralize acids to form salts plus water. These acid-base reactions are exothermic. Amines may be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen is generated by amines in combination with strong reducing agents, such as hydrides.

4.14 Toxicity
LD50 i.v. in mice: 21.1 mg/kg (Bertazzoli, 1970)
5. MSDS

2.Hazard identification

2.1 Classification of the substance or mixture

Acute toxicity - Oral, Category 4

Carcinogenicity, Category 1B

2.2 GHS label elements, including precautionary statements

Pictogram(s)
Signal word

Danger

Hazard statement(s)

H302 Harmful if swallowed

H350 May cause cancer

Precautionary statement(s)
Prevention

P264 Wash ... thoroughly after handling.

P270 Do not eat, drink or smoke when using this product.

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read and understood.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Response

P301+P312 IF SWALLOWED: Call a POISON CENTER/doctor/\u2026if you feel unwell.

P330 Rinse mouth.

P308+P313 IF exposed or concerned: Get medical advice/ attention.

Storage

P405 Store locked up.

Disposal

P501 Dispose of contents/container to ...

2.3 Other hazards which do not result in classification

none

6. NMR Spectrum
9. Other Information
9.0 Merck
14,3439
9.1 BRN
4229251
9.2 Overview
Doxorubicin (DXR) is a clinically important cancer chemotherapeutic agent and, in spite of undesirable acute and long-term toxic effects, DXR remains one of the most widely used antitumor drugs because of its broad spectrum of activity[1]. DXR was first isolated in 1969[1] from Streptomyces peucetius subsp caesius ATCC 27952, a higher DXR-producing mutant strain derived from the wild-type S. peucetius ATCC 29050 strain, and is formed by C-14 hydroxylation of its immediate precursor, DNR. Although a number of organisms (including the 29050 strain) are known to produce DNR [2], S. peucetius subsp caesius is the only organism reported to produce DXR. The current production of DXR is over 225 kilograms annually due to its wide use and the fact that it is the starting point for the synthesis of numerous analogs and derivatives aimed at improving clinical cancer treatment[1]. Although DXR was discovered as a microbial metabolite, it is produced commercially by semi-synthesis from the more abundant DNR instead of by fermentation. High-DNR producing strains are available worldwide yet apparently lack the ability to make useful amounts of DXR or the DXR produced cannot easily be separated from the DNR that also is present. Consequently, the development of improved strains for DXR production is a beneficial goal since this drug is an expensive product.
Doxorubicin Hydrochloride Injection, USP
Doxorubicin Hydrochloride for Injection, USP, is a sterile red-orange lyophilized powder.
Doxorubicin Hydrochloride Injection, USP, is a sterile parenteral, isotonic solution.
9.3 Indications
Doxorubicin is a potent antitumour agent active against a wide spectrum of malignancies, including leukaemias, sarcomas, breast cancer, small cell lung cancer and ovarian cancer. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin's disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer. Doxorubicin does not playa crucial role in the treatment of tumours that can be cured with chemotherapy, such as testicular carcinoma, nephroblastoma, Burkitt's tumour and choriocarcinoma[3]. Like most other cytostatic agents, doxorubicin is not effective in the most frequently occurring malignancies such as colorectal cancer and non-small cell lung cancer.
9.4 Mechanism of action
Doxorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action, however, remaining not fully understood: Data pointing to the role of free radicals, and to damage of mitochondria and membranes, have modified the original hypothesis that DNA-intercalation was the sole cytotoxic mechanism. Meanwhile, the focus on plasma pharmacokinetics has been shifted towards pharmacodynamic studies, with emphasis on cellular doxorubicin concentrations in haematopoietic tissues[4], in solid tumours[5], and in cell constituents. Doxorubicin forms complexes with DNA by intercalation between base pairs. In addition, doxorubicin-iron complexes bind tightly to DNA[6]. However, contrary to intercalated doxorubicin, the doxorubicin-iron complex preserves its ability to catalyze the formation of oxygen free radicals in the presence of double-stranded DNA[6]. Thus, the doxorubicin-iron complex-driven hydroxyl radical formation can proceed in close proximity to DNA and has therefore the potential to damage DNA efficiently, especially since DNA seems to catalyze hydroxyl radical formation by this complex[7]. Hydroxyl radicals are probably involved in damaging of DNA since the generation of hydroxyl radicals by the Dox-iron complex correlates with its ability to cleave DNA[7] and also since catalase, iron chelates and hydroxyl radical scavengers are protective in this system[6]. Relatively high concentrations of hydroxyl radical scavengers were required for protection, indicating that these radicals were indeed generated in a site-specific way.
Moreover, it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes. Topoisomerase II causes transient double-strand breaks during the twisting of 2 double-stranded DNA helices. Singleand double-stranded DNA breaks have been documented after in vivo and in vitro treatment with doxorubicin of P388 leukaemia cells in mice[8].
Special reference must be made to observations that interference with the cell membrane alone may lead to cell death [9]. Doxorubicin binding to membranes, and particularly its covalent binding to cardiolipin, a phospholipid with 2 negatively charged phosphate head groups, has received much attention[10]. Cardiolipin is found in the inner leaflet of the mitochondrial membrane and is closely associated with electron transport mechanisms. Goormaghtigh et al. (1983) [10] have shown that doxorubicin bound to cardiolipin undergoes redox cycling, producing covalent binding of doxorubicin to cardiolipin in mitochondrial membranes. The hydrophobic nature of the chromophore of anthracyclines allows partitioning into the lipid phase, resulting in changed fluidity of the membrane. Diminished membrane fluidity is related to doxorubicin resistance. A detailed study of the mechanisms involved in doxorubicin-induced changes in membrane structure and function has not been undertaken. However, doxorubicin binds to the epidermal growth factor receptor at clinically relevant drug concentrations, and alters its function.
9.5 Administration and formulation
Doxorubicin is available as a dry powder; reconstituted in water, it is most stable at a mildly acidic pH of 4, and unstable at a very acidic or basic pH[11]. When diluted in 0.9% sodium chloride or dextrose 5%, less than 5% decomposition occurred over 7 to 30 days[12]. It is stable in light at room temperature for at least 24 hours [12], although stability may be shorter in plasma and culture media[11].
Doxorubicin has been administered intravenously, intra-arterially, intraperitoneally, intrapleurally and intravesically. A bioavailability of 5% prohibits oral administration[13]. Subcutaneous, intramuscular and intrathecal application cannot be used, as severe tissue necrosis results, as in extravasation.
9.6 Pharmacokinetics
Absorption
An intravenous bolus injection of doxorubicin produces high plasma concentrations, which fall quickly due to rapid and extensive distribution into tissues. 50 to 85% of plasma doxorubicin is bound to protein[13], independent of the absolute drug concentration in plasma, leaving 15 to 50% of the total doxorubicin and doxorubicinol as free drug. After repeated injections no accumulation in plasma occurs. Apparent volumes of distribution are in the range of 20 to 30 L/kg (1400 to 3000L)[14].
Doxorubicin does not cross the blood-brain barrier and is therefore inactive against tumours in the central nervous system[15]. Some transplacental passage has been observed, although healthy children have been born after pregnancies during which doxorubicin was administered from the first to the third trimester[16]. Negligible doxorubicin concentrations have been found in breast milk. Salivary doxorubicin concentrations are 6 to 26% of plasma concentrations during the first 75 minutes after administration[17].

Metabolism
Doxorubicin is rapidly metabolized into the hydrophilic 13-hydoxy1 metabolite, doxorubicinol, and the poorly water-soluble aglycones, doxorubicinone and 7-deoxydoxorubicinone. Like doxorubicin, doxorubicinol is cytotoxic, but doxorubicinone is not[18]. Metabolism to doxorubicino1 occurs by cytoplasmatic NADPH-dependent aldoketoreductases, present in all cells, but particularly in red cells, and liver and kidney cells[18]. The non-cytotoxic aglycones are formed by an NADPH-dependent, cytochrome reductase-mediated cleavage of the amino sugar moiety in microsomes. This enzymatic reduction of doxorubicin is of paramount importance, as it finally produces the OH?-radicals, which cause extensive cell damage and cell death[19].

Elimination
Doxorubicin and its catabolites are primarily excreted in the bile[20]. Over 50% is eliminated during the first transit through the liver. Cumulative faecal excretion over 7 days has been estimated at 25 to 45%[21]; no evidence for enterohepatic recirculation has been observed. Although patients often notice a reddish coloration of the urine during the first hours to days after doxorubicin administration, only 0.7 to 23% (on average, approximately 5%) of a dose has been recovered in the urine[20, 21], of which approximately two-thirds is unaltered drug. Nevertheless, doxorubicin-induced nephrotoxicity has been noted only in mice, rats, rabbits and dogs, and not in humans. The reason for this interspecies difference has not been explained, although stimulated lipid peroxidation may play a role[22]. The doxorubicin plasma concentration-time curve can be best described by a biexponentia1 model, which is characterized by a distribution half-life of less than 5 to 10 minutes, and a terminal phase elimination half-life of 30 ± 8 hours[14]. A triphasic curve with half-lives of 12 ± 8 minutes, 3.3 ± 2.2 hours and 30 ± 14 hours has also been proposed[23].
9.7 Side effects
Doxorubicin is a carcinogenic and mutagenic substance. Phlebitis is frequently observed after long-term intravenous infusion[24]. Paravasal leakage causes severe necrosis of skin and adjacent tissues, the extent of which depends on the degree of extravasation[25]. An appropriate antidote is not available. A number of agents injected locally may even worsen the necrosis; however, ice packs and 48 hours' rest may be beneficial[25]. Acute doxorubicin toxicity consists of gastrointestinal complaints and cardiac arrhythmias. Nausea and vomiting occur within 4 to 8 hours of doxorubicin administration and can only be partially controlled by antiemetic drugs. Arrhythmias and electrocardiographic changes are transient. Anaphylactoid and hypersensitivity reactions ('flare') may occur during injection, thus mimicking extravasation, but discontinuation of therapy is not necessary[26]. In long term, infusion the occurrence of acute side effects is almost completely abolished. Repeated administrations of doxorubicin bolus injections, and the resultant high doxorubicin plasma concentrations, have been associated with an increased risk of acute and late-onset cardiotoxicity.
Delayed toxicity consists mainly of myelosuppression, alopecia and cardiomyopathy. At approximately 16 days after a single dose of doxorubicin the white blood cell and platelet counts reach their lowest point. Myelosuppression and alopecia are dose related, but independent of the mode of administration (i.e. peak plasma concentration). The onset of myelosuppression occurs after 7 to 10 days, and recovery at 19 to 24 days after doxorubicin administration. This side effect, although reversible, is dose limiting. Hair loss starts approximately 3 weeks after the first administration of doxorubicin; however, hair growth resumes a few weeks after the last therapy[26]. Local application of ice-packs to prevent hair loss have been of limited value. Mucositis and/or diarrhoea are noticed especially during long-term infusion regimens[24].
9.8 Overdosage
Acute overdosage with doxorubicin enhances the toxic effect of mucositis, leukopenia, and thrombocytopenia. Treatment of acute overdosage consists of treatment of the severely myelosuppressed patient with hospitalization, antimicrobials, platelet transfusions, and symptomatic treatment of mucositis. Use of hemopoietic growth factor (G-CSF, GM-CSF) may be considered. The 150 mg doxorubicin hydrochloride for injection and the 75 mL and 100 mL (2 mg/mL) doxorubicin hydrochloride injection vials are packaged as multiple dose vials and caution should be exercised to prevent inadvertent overdosage. Cumulative dosage with doxorubicin increases the risk of cardiomyopathy and resultant congestive heart failure (see WARNINGS). Treatment consists of vigorous management of congestive heart failure with digitalis preparations, diuretics, and after-load reducers such as ACE inhibitors.
9.9 References
  1. Arcamone F, et al 1998. Pharmacol Ther 76: 117–124.
  2. Grein A. 1987. Adv Appl Microbiol 32: 203–214
  3. Zubrod CG. Historic milestones in curative chemotherapy. Seminars in Oncology 6: 490-505, 1979
  4. Speth PAJ, et al Clinical Pharmacology and Therapeutics 41: 661-665, 1987
  5. Cummings J, et al Cancer Chemotherapy and Pharmacology 17: 80-84, 1986
  6. ELIOT, H., et al (1984) Biochemistry 23: 928-936.
  7. MUINDI, J. R. F., et al FEBS Lett. 172: 226-230.
  8. Russo P, et al Anticancer Research 6: 1297-1304, 1986
  9. Tritton TR, et al Science 217: 248-250, 1982
  10. Goormaghtigh E, et al Biochemical Pharmacology 32: 889-893, 1983
  11. Bouma J, et al Pharmaceutisch Weekblad, Scientific Edition 8: 109-133, 1986
  12. Benvenuto JA, et al Cancer chemotherapy by infusion, pp. 100-113, Precept Press, Chicago, 1987
  13. Harris PA, et al Cancer Chemotherapy Reports 59: 819-825, 1975
  14. Greene RF, et al Cancer Research 43: 3417-3421, 1983
  15. Mooney C, et al European Journal of Cancer and Oinical Oncology 19: 1037-1038, 1983
  16. Fassas A, et al Nouvelle Revue Fran~ise Hematologique 26: 19-24, 1984
  17. Celio LA, et al European Journal of Clinical Pharmacology 24: 261-266, 1983
  18. Bachur NR, et al Journal of Medicinal Chemistry 19: 651-654, 1976
  19. Myers CE, et al In Lawn (Ed.) Anthracyclines in press, 1988
  20. Takanashi S, et al Drug Metabolism and Disposition 4: 79-87, 1976
  21. DiFronzo G, et al Biomedicine 19: 169-171, 1973
  22. Mimnaugh EG, et al Biochemical Pharmacology 35: 4327-4335, 1986
  23. Benjamin RS, et al Cancer Research 37: 1416-1420, 1977
  24. Legha SS, Hortobagyi GN, benjamin RS. Anthracyclines. In Lokich JJ (Ed) Cancer chemotherapy by infusion, pp. 100-113, Precept Press, Chicago, 1987
  25. Rudolph R, Journal of Clinical Oncology 5: 1116-1126, 1987
  26. Maral RJ, et al Cancer Treatment Reports 65 (Suppl. 4): 9-18, 1981
9.10 Chemical Properties
Doxorubicin is an orange to red cake-like or needle-like crystalline solid. It is a cytotoxic anthracycline antibiotic isolated from cultures of Streptomyces peucetius var. caesius. Doxorubicin hydrochloride is an orange-red, crystalline, hygroscopic powder that is soluble in water and slightly soluble in methanol.
9.11 Originator
Adriblastina,Farmitalia,Italy,1971
9.12 Uses
Used as an antineoplastic
9.13 Uses
Strong fluorescent dye intercalating into DNA. Antitumour antibiotic. Effect of adriamycin on heart mitochondrial DNA. Inhibitor of reverse transcriptase and RNA polymerase; immunosuppressive agent.
9.14 Uses
Antibacterial;DNA intercalant
9.15 Uses
Doxorubicin hydrochloride (adriamycin hydrochloride) is an antitumour agent that has been formulated as a salt to achieve higher water solubility. While the salt shares the same pharmacological properties as doxorubicin free base, its greater water solubility may offer advantages in some in vitro applications. Physicochemical properties and chromatographic behaviour will depend on whether the pH is buffered. In non-pH controlled systems the free base and salt may behave differently.
9.16 Uses
Doxorubicin is an anthracycline antitumor antibiotic that inhibits DNA topoisomerase II by inducing double-stranded DNA breaks. By intercalating within DNA, doxorubicin inhibits nucleic acid synthesis and induces apoptosis by inducing the accumulation of the p53 tumor suppressor protein.[Cayman Chemical]
9.17 Manufacturing Process
Two 300 ml Erlenmeyer flasks, each containing 60 ml of the following culture medium for the vegetative phase, were prepared: peptone 0.6%; dry yeast 0.3%; hydrated calcium carbonate 0.2%; magnesium sulfate 0.01%; the pH after sterilization was 7.2. Sterilization has been effected by heating in autoclave to 120°C for 20 minutes. Each flask was inoculated with a quantity of mycelium of the mutant F.I.106 (the new strain thus obtained has been given the code F.I.106 of the Farmitalia microbiological collection and has been called Streptomycespeucetius var. caesius) corresponding to 1/9 of a suspension in sterile water of the mycelium of a 10 day old culture grown in a big test tube on the following medium: saccharose 2%; dry yeast 0.1%; bipotassium phosphate 0.2%; sodium nitrate 0.2%; magnesium sulfate 0.2%; agar 2%; tap water up to 100%. The flasks were then incubated at 28°C for 48 hours on a rotary shaker with a stroke of 30 mm at 220 rpm.,
2 ml of a vegetative medium thus grown were used to inoculate 300 ml Erlenmeyer flasks with 60 ml of the following medium for the productive phase: glucose 6%; dry yeast 2.5%; sodium chloride 0.2%; bipotassium phosphate 0.1%; calcium carbonate 0.2%; magnesium sulfate 0.01%; ferrous sulfate 0.001%; zinc sulfate 0.001%; copper sulfate 0.001%; tap water to 100%. The glucose was previously sterilized separately at 110°C for 20 minutes. The resulting pH was 7. This was sterilized at 120°C for 20 minutes and incubated at 28°C under the same conditions by stirring, as for the vegetative media.
The maximum concentration of the antibiotic was reached on the 6th day of fermentation. The quantity of adriamycin produced at this time corresponds to a concentration of 15 μg/ml.
9.18 Brand name
Adriamycin (Pharmacia & Upjohn); Doxil (ALZA); Rubex (Bristol-Myers Squibb).
9.19 Therapeutic Function
Cancer chemotherapy
9.20 Biological Functions
The C13 substituent of doxorubicin is hydroxymethyl, which retards the action of cytosolic aldoketoreductase and slows the conversion to the equally active, but chronically cardiotoxic, doxorubicinol.
9.21 General Description
Doxorubicin is available as both the conventional dosageform and a liposomal preparation, both of which are administeredby infusion. Doxorubicin HCl powder is available in10-, 20-, 50-, and 150-mg vials and is widely used in treatingvarious cancers, including leukemias, soft and bone tissuesarcomas, Wilms tumor, neuroblastoma, small cell lungcancer, and ovarian and testicular cancer.
9.22 General Description
Orange-red thin needles. Aqueous solutions yellow-orange at acid pHs, orange-red at neutral pHs, and violet blue over pH 9.
9.23 Air & Water Reactions
Water soluble.
9.24 Reactivity Profile
Amines, like Doxorubicin hydrochloride, are weak chemical bases. They neutralize acids to form salts plus water. These acid-base reactions are exothermic. Amines may be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen is generated by amines in combination with strong reducing agents, such as hydrides.
9.25 Fire Hazard
Doxorubicin hydrochloride is probably combustible.
9.26 Biological Activity
Antitumor antibiotic agent that inhibits DNA topoisomerase II. DNA intercalator that inhibits nucleic acid synthesis and induces apoptosis.
9.27 Biochem/physiol Actions
Naturally fluorescent anthracycline antibiotic, anticancer drug. Doxorubicin is a substrate of MRP1 which was first cloned from a DOX-resistant lung cancer cell line. Fluorescent property has been exploited for the measurement of drug efflux pump activities as well as resolving the important question of intracellular localization of various multidrug resistance proteins and the role of subcellular organelles (Golgi and lysosome) in the sequestration of drugs and its implication in drug resistant phenotypes.
9.28 Mechanism of action
Liposomes are taken up selectively into tumor cells, presumably because of their persistence in the bloodstream and enhanced permeability of tumor vascular membranes. In liposomal form, the drug is protected against enzymes that generate cardiotoxic free radicals, although this form of the drug can still induce potentially fatal congestive heart failure. Clinical experience with the liposomal formulation is limited, and few studies comparing the long-term toxicity with that of conventional doxorubicin therapy have been conducted. Therefore, all precautions outlined for the use of doxorubin also are employed when the liposomal formulation is used.
9.29 Clinical Use
Doxorubicin is utilized either alone or in combination therapy to treat a wide range of neoplastic disorders, including hematologic cancers and solid tumors in breast, ovary, stomach, bladder, and thyroid gland. A liposomal formulation of doxorubicin is used in the treatment of AIDS-related Kaposi's sarcoma and organoplatinum-resistant ovarian cancer.
9.30 Potential Exposure
An antibiotic product from streptomyces, used as anticancer drug
9.31 Veterinary Drugs and Treatments
Doxorubicin is perhaps the most widely used antineoplastic agent at present in small animal medicine. It may be useful in the treatment of a variety of lymphomas, carcinomas, leukemias, and sarcomas in both the dog and cat, either alone or in combination protocols. Refer to the Dosage references or the Protocols found in the appendix for more information.
9.32 Metabolism
This contributes to the longer duration of action compared to analogues that have CH3 at this position (e.g., daunorubicin). Doxorubicin is highly lipophilic and concentrates in the liver, lymph nodes, muscle, bone marrow, fat, and skin. Elimination is triphasic, and the drug has a terminal half-life of 30 to 40 hours. The majority of an administered dose is excreted in the feces.
9.33 Shipping
UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.
9.34 Incompatibilities
Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides
9.35 Waste Disposal
It is inappropriate and possibly dangerous to the environment to dispose of expired or waste pharmaceuticals by flushing them down the toilet or discarding them to the trash. Household quantities of expired or waste pharmaceuticals may be mixed with wet cat litter or coffee grounds, double-bagged in plastic, discard in trash. Larger quantities shall carefully take into consideration applicable DEA, EPA, and FDA regulations. If possible return the pharmaceutical to the manufacturer for proper disposal being careful to properly label and securely package the material. Alternatively, the waste pharmaceutical shall be labeled, securely packaged and transported by a state licensed medical waste contractor to dispose by burial in a licensed hazardous or toxic waste landfill or incinerator.
9.36 Usage
Antitumor antibiotic agent that inhibits DNA topoisomerase II.Doxorubicin hydrochloride is used as an antineoplastic, antibiotic agent that inhibits DNA topoisomerase. It also inhibits nucleic acid synthesis and induces apoptosis. It posses fluorescent property, which enable it for the measurement of drug efflux pump activities and the role of subcellular organelles (golgi and lysosome) in the sequestration of drugs.
9.37 Usage
Doxorubicin hydrochloride is a DNA intercalator and powerful cytotoxic agent. Doxorubicin inhibits topoisomerase II which results in an increased and stabilized cleavable enzyme-DNA linked complex during DNA replication and subsequently prevents the ligation of the nucleotide strand after double-strand breakage.
9.38 Usage
It acts as an antitumor antibiotic agent that inhibits DNA topoisomerase II and acts as a DNA intercalator that inhibits nucleic acid synthesis and induces apoptosis. It reduces intracellular tau levels. By intercalating within DNA, doxorubicin inhibits nucleic acid synthesis and induces apoptosis by inducing the accumulation of the p53 tumor suppressor protein. It is an is an inhibitor of AMPK, TERT and POLR. its fluorescent property has been exploited for the measurement of drug efflux pump activities as well as resolving the important question of intracellular localization of various multidrug resistance proteins and the role of subcellular organelles (Golgi and lysosome) in the sequestration of drugs and its implication in drug resistant phenotypes. It is applied as an antineoplastic.
10. Computational chemical data
  • Molecular Weight: 579.983g/mol
  • Molecular Formula: C27H30ClNO11
  • Compound Is Canonicalized: True
  • XLogP3-AA: null
  • Exact Mass: 579.1507385
  • Monoisotopic Mass: 579.1507385
  • Complexity: 977
  • Rotatable Bond Count: 5
  • Hydrogen Bond Donor Count: 7
  • Hydrogen Bond Acceptor Count: 12
  • Topological Polar Surface Area: 206
  • Heavy Atom Count: 40
  • Defined Atom Stereocenter Count: 6
  • Undefined Atom Stereocenter Count: 0
  • Defined Bond Stereocenter Count: 0
  • Undefined Bond Stereocenter Count: 0
  • Isotope Atom Count: 0
  • Covalently-Bonded Unit Count: 2
  • CACTVS Substructure Key Fingerprint: AAADceB6PAAEAAAAAAAAAAAAAAAAAAAAAAA0YMGCAAAAAADBQAAAHgAQCAAADHzxmAcyDoBABgCIAqBSAAICCAAkIAAIiIFGCMgfNzaGtRqicWAn8BEPuYfL7PzOwQADAAAYAADCAAYQADAAAAAAAAAAAA==
11. Recommended Suppliers
Global372SuppliersView all >>
  • Products:Cosmetic Grade Chemical Raw Materical,Chemicals Raw Materials,API,Pharmaceutical Intermediates,Organic Chemicals
  • Tel:0311-88180881-19932787653
  • Email:sale06@ruiyaobio.com
High purity Doxorubicin hydrochlorideCAS NO.: 25316-40-9 with good price
  • Purity:99%Packing: 200kg/bag FOB
  • Price: 1 USD/kg
  • Time: 2023/05/30
Inquire
  • Products:chemicals
  • Tel:0311-18503114-031178503114
  • Email:mandy@rilonchem.com
99% purity Doxorubicin hydrochloride(25316-40-9)
  • Purity:99%Packing: 200kg/bag FOB
  • Price: 60 USD/kg
  • Time: 2023/05/30
Inquire
  • Products:My whatsapp:+86 13043111536 cas no.1451-82-7,79099-07-3,5449-12-7,5337-93-9,49851-31-2,288573-56-8
  • Tel:86-311-13043111536
  • Email:Rachel@wh-xiju.com
High Quality 99% Purity Doxorubicin hydrochloride Cas 25316-40-9 with Best Price
  • Purity:99%Packing: 200kg/bag FOB
  • Price: 20 USD/kg
  • Time: 2023/05/30
Inquire
  • Products:Top quality and high purity with safe transportation and low price
  • Tel:+86153-92039515-15392039515
  • Email:victoria@xmwonderfulbio.com
CAS:25316-40-9 Lower Price Higher Quality Doxorubicin Hydrochloride
  • Purity:99%Packing: 200kg/bag FOB
  • Price: 20 USD/kg
  • Time: 2023/05/30
Inquire
  • Products:Pharmaceutical intermediates
  • Tel:+86136-73235967-+8613673235967
  • Email:sales07@rulintech.com
High quality factory adriamycin, hydrochloride CAS 25316-40-9 Doxorubicin Hydrochloride in stock
  • Purity:99%Packing: 200kg/bag FOB
  • Price: 100 USD/kg
  • Time: 2023/05/30
Inquire
12. Realated Product Infomation